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ABSTRACT

Synthetic hyperspectral signatures representing an airborne target engine radiation, a decoy flare, and the
engine plume radiation are used to demonstrate computational techniques for the discrimination between
such objects. Excellent discrimination is achieved for a "single look" at SNR of-lOdB. Since the
atmospheric transmittance perturbs the signature of all objects in an identical fashion, the transmittance is
equivalent to a modulation ofthe target radiance (in the spectral domain). The proper spectral signal
decomposition may, therefore, recover the original unperturbed signature accurately enough to allow
discrimination. The algorithms described here, and in two accompanying papers, have been tested over
the spectral range that includes the VNTR and MWIR and are most appropriate for an inteffigent,
autonomous, air-to-air or surface-to-air guided munitions. With additional enhancements, the techniques
apply to ground targets and other dual-use applications.

I INTRODUCTiON

The subject addressed in this paper is related to the utilization ofhyperspectral signatures for the
classification ofobjects, with specific emphasis on the discrimination ofta.rgets from countermeasures in
airborne applications. In this investigation, hyperspectral techniques refer to two topics, which are
defined as follows.

1 . A signature that is expressed as a function of wavelength, often in a large number of contiguous bands,
is referred to as hyperspectral signature, obtained via a hyperspectral sensor. This aspect of the
definition is in contrast to multispectral techniques in which the signature is expressed in a (small)
number ofdiscrete bands.

2. The second aspect ofthe definition is related to mathematical operations in which the signature in the
spectral domain is operated upon by various mathematical transforms. The signature is said, in this
case, to be transformed into a hyperspectral domain, allowing treatment akin to the familiar
time-spectrum domain analyses (e.g., Fourier Transform). Based on context, there is little chance for
confusion as to which aspect ofthe definition is used.

Pseudo spectrum, or pseudo signature of a target, is defined as a contiguous spectrum, constructed
from the original signature by selecting discrete spectral (not necessarily contiguous) bands (not
necessarily of uneven bandwidth). The collection of such discrete and non uniform bands into a pseudo
spectrum allows the application of all common signal processing mathematical tools for the purpose of
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signature analysis. The optimal selection ofwhich, and how many, bands to be included in the pseudo
signature ofa target is another object ofthe present investigation. The robustness ofthe target/decoy
discrimination is found to directly depend on the proper and judicious selection ofthese bands, and some
important trade-offs must be addressed. To emphasize, in the present investigation we limited ourselves
to target/decoy discrimination, assuming that the seeker has already locked onto the target; we do not deal
with search and target acquisition. Furthermore, we are not dealing with the probabilistic framework of
decision making and hypothesis testing. Thus, we do not consider probability of detection nor false alarm
rates.

Several approaches were considered for target/decoy discrimination, all are performed in the hyperspectral
domain. The approaches discussed here are based on autocorrelation, matched filter discriminator, and
singular value decomposition (SVD) techniques. We recognize that such technique may be
computationally expensive. A discrimination algorithm that also results in a robust discrimination and is
much faster, is based on a similar technique, orthogonal subspace projection, and is described in a
concurrent set ofpapers.1'2 Reference 2 also discusses an approach for rapid atmospheric deconvolution
for the pseudo spectrum of targets.

In the following analysis, we use synthetic signatures generated via the application ofLOWTRAN or
MODTRAN in conjunction with a radiation source. For simplicity, the target (or engine) is assumed a
Planckian radiator at about 800 K, the plume radiance is calculated via LOWTRAN by specifying a layer
ofhot gas (with HO and CO2 contents corresponding to the stoichiometric combustion ofjet fuel) at
about 600 K, and a decoy flare is assumed a Planckian radiator at 2,000K.

2 ANALYSIS

We begin with some preliminary definitions and assumptions to characterize the computational
framework. We conclude by addressing extensions that might be required to increase the robustness of
the methodology when handling data from actual sensors.

We assume that the sensor provides intensity readings in N spectral bands. For the purpose of
discrimination, we require baseline (truth data) spectra for plume, engine, and flare corresponding to
various engagement scenarios. In the sequel, we limit ourselves to a single configuration, and denote the
quantities of interest asp, e andf (n = 0,. .,.N-1), respectively. Furthermore, let i represent a vector
combining the noise and clutter inherent to the sensing paradigm.

The hyperspectral signature can then be written a

s=x÷r VnE[0, N—i] (1)

The unknown spectral components x may originate from any of the following observations:
= 0 : noise/clutter

flare
= : engine

plumex = +e : engine and plume
Our first order of business is to discriminate between a target [x = e [vJ e +pj and a decoy [x =f].
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2.1 Target-Decoy (Flare) Discrimination

The most critical step in any discrimination problem is the appropriate choice of a decision space. If each
spectral pattern class corresponds to an "attractor" (using the language ofnonlinear dynamical systems
theory), one would like to choose, ifpossible, a space where the distances between attractors are
maximized.

In the particular instance under consideration, the sensor provides data in the spectral domain.
Discrimination could be attempted on such data directly. On the other hand, it is important to remember
that noise and clutter are present, and, sometimes contribute at such strengths as to completely drawn the
signatures. Therefore, a compelling incentive exists to carry out the discrimination in some transformed
domain, where the impact ofnoise and clutter would be reduced.

Let �1 denote a spectral operator, chosen from a broad selection ofwell known transforms (i.e., Fourier,
Hadamard, Hermite, Hilbert, .. .). operates on spectral data, we say that it maps the spectral domain
into a hyperspectral domain.

Without loss ofgenerality, we can choose the following computational scheme

c�=koy (2)
Here 3 denotes a DFT (or a FFT), and .4 performs an auto correlation on the resulting complex
hyperspectrum. Our approach, and typical results obtained, are illustrated in Figs. 1 and 2 that correspond
to SNR of+lOdB and -10dB per spectrometer data frame (i.e., "single look"), respectively.

The lower left quadrant displays the baseline synthetic spectra ofthe engine, the plume, and the flare.
Contributions ofnoise and clutter in each spectral band are also plotted, on a common scale. The upper
left quadrant shows the corresponding hyperspectra. The reader should note that these left-hand-side
(LHS) quadrants are used for illustrative purposes only. Discrimination is carried out based upon the
information displayed in the right-hand-side (R.HS) quadrants. The lower RHS quadrant involves plots of
the signals. In all these calculations the SNR refers to the signal-to-noise ratio where the noise power is
referred to the combined engine and plume (but not flare) power.

s=fn+11 (3)

and

Sn+T (4)

wherey= {o Ie I pI e +p}. The random processes f° and i are allowed to exhibit a variable degree
of incoherence, to capture the fact that the difference in spatial location between target and decoy often
results in different background contributions. The sensor actually measures either or b The two
quantities are plotted concomitantly in the lower RHS quadrant, to illustrate the difficulty of making a
correct decision in the spectral domain when noise and clutter dominate.
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Figure 1. Target - Decoy Discrimination at SIN= 10 dB (Signal Source is the Engine).

Figure 2. Target - Decoy Discrimination at SIN= -10 dB (Signal Source is the Engine).
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The upper RHS quadrant presents the situation in the "decision" space. We have piotted the quantities

a ç(a) (5)
and

b.ççb) (6)
We observe that, even when the SNR drops to -10dB per frame, discrimination is easily performed. An
important benefit resulting from the particular choice ofQ [viz Eq. (2)] is that dedicated microelectronics
hardware implementation is straightforward.3

2.2 Plume-Engine Discrimination

At this stage we assume that the target-decoy discrimination has been successfully completed, and we
focus on the surprisingly harder problem ofdistinguishing between engine and plume. Thus, our objective
now is to determine, given the hyperspectral signature

SnYn+TIn (7)
the precise nature ofthe spectral source, i.e.,

yn = 0 : noise/clutter (miss target)
yn = e . engine
yn = pn . plume
yn = pn + e : engine and plume

A number ofdifferent approaches could be explored in that context. First, we observe that the � operator
[viz Eq. (2)], which can be successfully utilized to discriminate target from decoy, appears less sensitive to
the spectral differences between engine and plume in the presence of strong noise and clutter interference
{i.e., at SNRs < 5dB per frame]. We can construct a matched ifiter discriminator, building upon the
classical computational scheme

Co[y' (* (8)

Co[' (b* (9)

etc. .. In the above expressions, the symbol 0 denotes operator composition, C refers to correlation and
3:,_1 stands for the inverse Fourier transform. Note that and are here the complex conjugates of the

frequency inverted hyperspectra for the engine and plume, respectively. Computational experiments
indicate that the discrimination power may be inadequate for SNRs under 10dB per frame.

The methodology that shows most promise, is based upon a powerful mathematical technique called
"Singular Value Decomposition.4" In the most general case, given a complex-valued M x N matrix A of
rank K, the SVD theorem states that there exist positive real numbers o �cY2�... (the so-called
singular values of A), an M x M unitary matrix U, and an N x N unitary matrix V, such that the matrix A
can be expressed as

A=UZV' (10)
where theM x N matrix has the structure

(11)
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and D = diag [.. k1 is a K x K diagonal matrix. In Eq. (10) VH denotes the Hermitian of V. Using the
SVD paradigm, we can construct the following discriminator. Consider the engine spectrum We can
define the engine spectral covariance matrix Ce

CeêT (12)
where the superscript Tdenotes transposition. More robustly, ifnoise and clutter estimates in the
appropriate field ofview can be readily obtained, we will set

CeEET (13)
where

E=(e(l),...,e(k)) (14)
and

e(k)e+j(k) (15)
In the above expressions, k (k = 1 , . . .,K) indexes spatial resolution cells from which noise/clutter estimates
are measured.

In a similar vein we can construct covariance matrices for , ( + and . We will then carry out

singular value decomposition OfCe, Cp, Cp÷and C to obtain the vectors (z = e,p, i, s). The
discrimination decision will be based upon an appropriate comparison ofthe vectors (e.g., matched
filter, correlation). This approach should show quite successful at low SNRs (down to approximately
-10dB per frame) as is ifiustrated in Fig. 3. The reader should note the differences in the information
displayed from the previous figures. The lower LHS quadrant is unchanged. The upper LHS quadrant
now displays the vectors (z = e,p, r, s). The lower RHS quadrant portrays the signal measured by
the sensor, while the upper RHS quadrant plots the baseline spectrum corresponding to the detection
decision reached. It should be noted that the terminal guidance aim-point selection can be performed on
the basis ofeither engine or plume signals. In fact both, the engine and plume signals are separately
recognized by the algorithm as shown in Fig. 4.

We would like to point out that the same computational scheme could be applied to data in the
hyperspectral domain, i.e., one could construct covariance matrices C,C, C, and obtain, using SVD

techniques, vectors = è,b, , ...) upon which discrimination could be based. These possibilities have
not been investigated yet. In the next section, we briefly indicate a desirable enhancement to our
SVD-based scheme. Our aim is greater robustness in discrimination when processing noisy data from a
low resolution (in the dynamic range sense) sensor.
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Figure 3. Engine - Plume Discrimination at S/N = -10dB (Signal Source is the Plume).

Figure 4. Engine - Plume Discrimination at S/N = -10dB (Signal Source is the Combined Plume and

Engine Spectra).
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2.3 Future Directions and Enhancing the Discrimination Algorithms

To proceed along the lines indicated above, we consider the following transformation:
N—i

(k)q,= AS (16)
n=o

where the superscript k indexes the successive spectrometer scans, and A is a complex-valued matrix that
relates information in spectral channel n to the various baseline signatures t. It is not necessary, at this
stage, to specif' the explicit form ofthe matrix elements A. We only require A to be unitary. Let Q

denote the data matrix constructed byA-filtering successive snapshots ofthe spectrometer. Recall

that represents the Hermitian of Q.

(1W

0=

(kW (17)

Our basic idea is to decompose Q into two orthogonal subspaces: a spectral signature subspace, and a
noise subspace. Specifically, we can write

0- UU,—( 0 )v' (18)

By definition of singular value decomposition we have

UHU=I (19)

and

VHV=i (20)

where I and 4 are identity matrices ofdimensions L x L and K x K. In the absence ofnoise/ clutter (i.e.,
when = 0), this would imply

A1V0=O (21)

When noise/clutter is present, Eq. (21) no longer holds. However, it is possible to look for the largest
peaks in the inverse null spectrum

(22)

which provide the information required for the discrimination process. This approach is particularly
attractive in view of the existence of analog VLSI microelectronics circuits enabling ultra-fast peak
detection (i.e., "K-winners take all" neural architectures) and matrix vector multiplications (using, e.g.,
charge domain neural chip operating at 1012 ops/s/bit-of-precision), at a milliwatt power cost. The
proposed approach builds upon super resolution methods developed for radar direction finding5

3 SUMMARY

The concept of hyperspectral transforms domain analysis of multi- and hyperspectral signatures was
introduced. Several computational schemes utilizing this concept were discussed in relation with the
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discrimination problem between an airborne target and countermeasures. The algorithms have been
shown to be extremely powerful, even in the presence ofunusually poor signal to noise, for discrimination
under a single look. Hyperspectral analyses techniques are appropriate for autonomous, inteffigent,
guided munitions, and may be used for subpixel targets. The same algorithms, utilizing the spectral
signature ofbackgrounds, may be exercised to assist in the detection oftargets against background and
clutter.
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